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Symplectic tracking of beam particles with point magnets is achieved using a reference orbit made of
circular arcs and straight lines that join smoothly with each other. For this choice of the reference orbit,
results are given for the transfer functions, transfer matrices, and the transit times of the magnets and
drift spaces. These results provide a symplectic integrator, and allow the linear orbit parameters to be
computed by multiplying transfer matrices. It is shown that this integrator is a second-order integrator,
and that the transfer functions can be derived from a Hamiltonian.

PACS number(s): 29.27.Bd, 41.85.—p

I. INTRODUCTION

In order to study long term stability, it appears desir-
able that particle tracking be symplectic. One way to
achieve symplectic tracking [1] is to replace the magnets
by a series of point magnets and drift spaces. This ap-
proach is modified here by using a reference orbit that is
made up arcs of circles and straight lines which join
smoothly with each other. This makes the symplecticity
more evident, and simplifies in some way the particle
tracking, as the coordinate system based on this reference
orbit is not changing discontinuously between elements.
It also allows the use of transfer matrices to find the
linear orbit parameters. For this choice of reference or-
bit, the required results are obtained to track particles,
which are the transfer functions, the transfer matrices
and the transfer time, for the different elements present in
the accelerator. It is shown that, in the absence of longi-
tudinal magnetic fields these results provide a symplectic,
second-order integrator. Existing tracking programs that
use a reference orbit, made up of arcs of circles and
straight lines, can be modified, using the results given
here to do symplectic tracking with point magnets. The
results have been used to modify the ORBIT tracking com-
puter program [2]. The ORBIT program will now, by
changing an indicator, either track using the usual large
accelerator approximation for the transfer functions or
do symplectic tracking with point magnets, and will use
the same reference orbit in both cases. The ability to use
transfer matrices to find the linear orbit parameters by
multiplying matrices makes possible a precise determina-
tion of the tune, closed orbit, and the emittance, which
can be useful in some tracking studies.

II. EQUATIONS OF MOTION

The equations of motion for the transverse coordinate
when no longitudinal magnetic field is present may be
written as [3,4]
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dx _1+x/p

ds Py P

“Z’; =%+%(l+x/p)3y,

%z(_l_—%/ﬁ)_py , (2.1a)
%’sz_=_§<1+x/p>Bx :

p=(p*—pi—p))"*.

X,y are the transverse coordinates in a coordinate system
based on a reference orbit with radius of curvature p(s).
As the longitudinal coordinates one can use ¢, the particle
time of arrival at s, and E the particle energy. The longi-
tudinal coordinates obey the equations

dt_1+tx/pp

ds p, v’

dE (2.1b)
Ti;—:e(l_i_x/p)éS .

In Eq. (2.1) it has been assumed that the magnetic field
has no longitudinal component B, =0 and the electric
field has only a longitudinal component &,. One can
show that equation for dt/ds is equivalent to, see Eq.
(5.7,

(2.1¢)
dl=[(1+x /p)*+(dx /ds)?+(dy /ds)*]'/*,

where d! is the path length of the particle over ds.

The equations of motion, Eq. (2.1) may be derived from
the Hamiltonian [3,4]
H=—(1+x/p)p*—pi—p})'*—(e/c)1+x/p)A, ,

(2.2a)

where the fields are related to the vector potential A by
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B=—Lt 9 [(14x/p)4,]
Y~ (1+x/p) ox pasds
B,=—2 4, (2.2b)
dy
_ 1 04,
6=~ c ot

It then follows that transfer functions across any ele-
ment found by integrating Eq. (2.1) exactly are symplec-
tic transfer functions. The phrase transfer function is
used here to indicate the set of functions that relates the
final coordinates to the initial coordinates.

III. THE APPROXIMATE LATTICE

One procedure [1] for symplectic integration of Eq.
(2.1) is to replace each magnet in the given lattice by a
series of point magnets and drift spaces. The equations of
motion (2.1) for the approximate lattice, which has only
point magnets and drift spaces, can be integrated exactly
when the reference orbit is made up of a series of smooth-
ly joining arcs of circles and straight lines. The result ob-
tained by integrating the approximate lattice of point
magnets and drift spaces is correct to second order (see
Sec. VII) in h where A is the distance between the point
magnets, provided one chooses the strength of the point
magnets as given below. Thus as one increases the num-
ber of point magnets, decreasing #, the result obtained by
integrating the approximate lattice will converge to the
solution of Eq. (2.1) for the given lattice. The particle
motion found by integrating the approximate lattice is
symplectic, as the transfer functions proposed below for
the point magnets will be shown to be derivable from a
Hamiltonian.

IV. TRANSFER FUNCTIONS FOR POINT MAGNETS

In the region of the lattice outside the rf cavities where
the particle velocity is constant, it is convenient to use
the coordinates q,,q, instead of p,,p,

49x=Px/P > 9,=P,/P ,

s (4.1)

=(1—g¢2—q; ps/p -

For large accelerators g, ~dx /ds and q,~dy /ds. In
the lattice region where p is constant, Eq. (2.1) can be
written

dx _1+x/p

ds qs qX b

d

—&=q—s+—1—(l+x/p)By ,

s P Bp 4.2)
dy _1+x/p ’
ds qs K

dg, 1

*‘;—- —B?(l—}-x/p)Bx N

Bp=pc/e .

To construct the approximate lattice, each magnet is
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broken up into pieces with length 4. h can be different
for each piece. Each magnet piece is replaced by point
magnets in one of the following ways.

(1) Each magnet piece is replaced by a point magnet at
each end of the piece separated by a drift space of length
h.

(2) Each magnet piece is replaced by a point magnet in
the center of the piece surrounded by drift spaces of
length h /2.

Equation (4.2) suggests the following transfer functions
for the point magnets. If the point magnet is located at
§=§1,X,=X1,y, =), and for point magnets at the ends

1

h .
qx2=qx1+__—(1+x1/P)By(x1,S1,y1)

Bp 2
lph (4.32)
9y2=4qy1= Bp 2(1+x1/p)B (X1,81,91) -
For a point magnet at the center
1
qx2:qx1+B—h(l+xl/p)By(xl’slsyl) ’
P (4.3b)

1
qy2=qy1—-1$h(1+x1/p)Bx(x1,s1,yl) .

It will be shown in Sec. VII, that using the transfer
functions given by Eq. (4.3), the results found using the
approximate lattice are correct to order 22, For the most
part, results given below will be for the case where the
point magnets are placed at the ends of the magnet piece.

The transfer functions in Eq. (4.3a) can be derived from
the Hamiltonian

H=—(1+x/plg,—5—(1+x /p)

Bp Ab(s—s;),
where
1
B,= (1+x/p) ox [(1+x/p)A 1,
5 4.4)
sz—gAs

The transfer functions given by Eq. (4.3a) have one in-
convenient feature, which is that in the case where the di-
poles are uniform field dipoles, the central closed orbit in
a magnet piece is not in general the chord of the refer-
ence orbit between the ends of the piece. This can be
corrected by introducing the factor sin6/6,0=h /2p, in
Eq. (4.3) to give the transfer function

1 sin@
dx2 qx1+Bp 2(1+ /P) (xl’shyl) ’

1 4.5)
9=q,1— Bp 2(1+ l/p) B (X sp1) s
6=h/2p .

Since the factor in sin6/6 only changes the right side
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to Eq. (4.3) by terms of (k) Eq. (4.5) is also correct up to
terms of order h2. Using Eq. (4.5), when the dipoles have
uniform fields and the reference orbit is a circular arc, the
central closed orbit is the chords of the circular reference
orbit as defined by the magnet pieces. Since the factor
sinf /0 does not depend on the coordinates of the parti-
cle, Eq. (4.5) can be derived from a Hamiltonian.

V. TRANSFER FUNCTIONS FOR DRIFT SPACES

The result for the transfer functions for drift spaces de-
pends on the 1/p value of the reference orbit, on whether
1/p=0or 1/p#O0.

A. 1/p=0 drift space

Equation (4.2) becomes

dx dqx
i b =O ’
ds 9x/4s ds
d dq
L=q,/q,, =0, (5.1)
g, =(1—gq}—g})'"*.
One finds

Gx2=qx1 > X2=%X1tqx(s2—51)/q5 »
92=4y1 > Y2=y1+a,(s,—5)/q5 ,
9s2=9;s1 -

One may note that (s, —s)/q,, is just /,, the path length
between s, and s,, as dl =[(1+x /p)/q;]ds.

B. 1/p50 drift space

Equation (4.2) gives

dx _1+x/p dgx _ 45
4 o B Tas T,
(5.2)
dy _1+x/p 4 _,
ds g 7 ds '
For the y motion, q, is constant and
9y2=4y1 >
g (5.3)

y2=yitayln,

using dl=[(1+x/p)/q;1ds. A result for I, is given
below. For the x motion Eq. (5.2) can be solved by using
the transformation

q, =a sina ,

a=(1—g))'"*, (5.4)
g, =(a*—g})V?=a cosa .
One finds that
a=0+a,;, 0=(s—s{)/p,
(5.5a)

gy 1=asina, , g, =acosa, .

This gives
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42 =g, 1c080+q,sinb ,
g, = —g,sinf+g,,cosb , (5.5b)
9=(S2—sl)/p .

Equations (5.5) show that gq,,q; are rotated by the angle
6=(s,—s;)/p. The x equation can be solved, using
g, =asin(6+a,), g,=a cos(6+a,),

x,=x,+(1+x,/p)2psin(6/2)
% q,1c0s(0/2)+¢qsin(6/2)

—g,15in6+ g, cosO (5.6a)
Equation (5.6a) can also be written as
x,=x;+(1+x,/p)2psin(0/2)———, (5.6b)
q,(0)
(x,+plge,=(x;+plgy . (5.6¢)
C. Path length of drift spaces
Using
dl=[(1+x /p)*+(dx /ds)*+(dy /ds)*lds ,  (5.7a)
one finds that
ar=11x7p 4 (5.7b)
For 1/p=0 drift spaces, g, is constant and
llZZL(SZ_sl) . (5.8)
s
For 1/p7#0, Eq. (5.7b) can be integrated using
ptx s CO%%
+x g, cos(6+a,) ’
b : (5.9)
g,=acos(0+a,),
and gives
l,=(1+x,/p)y2sn8
? (5.10a)
0=(SZ—SX )/p .
Another expression for /,, is
=2p8in(0/2) 1\ (4 x))/20] . (5.10b)

I
12 ¢,(6/2)

VI. COMMENTS ON THE LONGITUDINAL TRACKING

The longitudinal variables are E, the energy of the par-
ticle, and ¢, the time of arrival at s. These are usually
measured relative to the synchronous path.

To simplify things, the case discussed here is the case
of the stationary bucket. In this case the particle energy
in the synchronous path, E_, is constant. The rf frequen-
cy w,¢ is chosen so that the synchronous particle arrives
at the rf cavity when the rf voltage is zero.
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The particles on the synchronous path may be chosen
to follow the central closed orbit of the lattice. If the lat-
tice is made up of quadrupoles and uniform field dipoles,
then for the approximate lattice, the closed orbit in the
dipoles will follow the chord that joins the end points of
each magnet piece. Thus the path length of each magnet
piece for the synchronous particle is given by

L,=2psin(6/2) ,
6=L, /p .

6.1

L, is the magnet piece length along the reference orbit.

If the dipoles are not uniform field magnets then the
central orbit of the lattice has to be computed by the
tracking program which will also compute L.

Using the L, for each magnet piece Eq. (6.1) one can
compute the total path length L of the approximate lat-
tice, and then w is given by

vS

W= h 1.f27T_ N

L (6.2)

where h; is the chosen harmonic and v, is the velocity of
the synchronous particle. Note that o depends on how
many pieces are used for the magnets. As the number of
pieces is increased, w, will approach the correct o, for
the actual lattice. The above assumes that there is one rf
cavity around the lattice.

In tracking a nonsynchrous particle, one has to com-
pute the change in 7 across each magnet piece. Where

f=t—t,, (6.3)

t; is the time of arrival for the synchronous particle. A7
across each piece is given by

AT=At—At,
L
=L = 6.4)
v v

L is given by Eq. (5.10) or Eq. (5.8). To avoid the cancel-
lation that may occur, one can use the following expres-
sion for 1/B—1/B,, B=v /c:

1 _ 7ty 1
By v (B+B,) v.BB,

1
B

(6.5)
7=(r—y)/7s» y=01—p)"2.

Using the above result for A7 for each magnet piece, one
can track 7 around the lattice. At the rf cavity the phase
of the rf is given by wf, from which the cavity voltage
and the energy gain of the particle can be computed.

VII. A SECOND-ORDER INTEGRATOR

In this section, it will be shown that the results ob-
tained using the approximate lattice are correct to terms
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of order h?2 for each magnet piece of length 4. The equa-
tions of motion will be written in this form

i fix), i=1,7 (7.12)

dA —fito, =17, e
where the seventh equation is

ds

—=1. 7.1b

an 1 ( )

The f;(x) do not then depend on A, which simplifies the
algebra. One can then obtain the Taylor series result
which is correct to order A2 for the transfer functions for
a magnet piece of length s, —s, =h.

af;

ax, I

X

h?_
x; 2

il

Xp=xyt+finh+ 3
i=1,6

(7.2)

x;; and Xx; are the coordinate at s=s; and
s=s,,fi1=fi(x;;). Equation (7.2) can be derived from
the Taylor series expansion

_ dx; . d*x; )
X=Xt d_l x,-lh + —d_);T x“h + -,
dx; _
ar |s, S 7.3)
d’x; | dfi _ of; dx;
di? e dA X ? axj x; dA
af;
J axj ’ *i

The transfer functions given by Eq. (7.2) are correct up to
order % Thus it is necessary to show that the approxi-
mate lattice gives the same result, up to terms of order A 2
as Eq. (7.2). Two approximate lattices have been studied.
The first where the point magnets are put at the end of
each magnet piece, and the second where the point mag-
net is put at center of the magnet piece.

Point magnets at the ends

The equation of motion may be written as

i gtk
an - v (7.4)
fi=g+K;, .

and K —0 when B,, B,—0. It may be seen from Eq.
(2.1) that in the absence of longitudinal field K; =0 when
i=1,3 and K, and K, do not depend on g,,q,. In drift
spaces, K; =0, and the motion is determined by the g;.

The x; begin at x;,. After the kick due to the point
magnet at s =s; the x; change to x;,. The particle then
drifts and just before the kick at s =s,, the x; become x;;.
The transfer function relates x;, to x;;, where x;, are the
coordinates after the kick at s,. For the kick at s, one
writes
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Xp=x; T4,
. (7.5)
After the drift space, Eq. (7.2) gives x;3
i h?
3=X;,+gnh+ —g | = .
Xi3=Xj2 ngh ? axj gj x ) (7 6)

The last term in Eq. (7.6) can be evaluated at x;, instead
of x;, with an error of order 43. The g;, can be evaluated
as

h
8i2=8i xi1+'2—Ki1] ,
dg; h
=0, + —_— ) = . .
gt |13 K| 5 1.7
J J il
Thus one finds
_ h? | 9g; 9g;
X;3=x;th [gn"‘%Kn]“*'T —ax—jgj-i——ax—jKj .
(7.8)
The last kick gives
x,-4=x,~3+%hK,-3 N
(7.9)
okK; . R
Ki3=Ki1+2 a—xj . h(g11+in1)+O(h )7
J il
xi4=x;th(gy+K;)
h2 og; ag; IK; K; K;
2 4 ax; J ax; 4 ax; J ax; 2 |x,
(7.10)

I B2 of; oK; Kj
Xi4=X;1 fil ) % axj j axj 2

*i1
Equation (7.10) agrees with the Taylor series result Eq.
(7.2) except for the term
dK; K;

ax j 2 X1 ’

h2

(7.11)
25

In the absence of longitudinal fields this term is zero as
K,=K;=0 and 93K,;/dx;=0 when j=2,4. The result
found using point magnets at the ends of each piece
agzrees with the Taylor series result up to terms of order
he.

In the same way, it can be shown that the approximate
lattice with a point magnet at the center of each magnet
piece also give a transfer function that is correct up to
terms of order h2.

VIII. TRANSFER MATRICES
FOR THE APPROXIMATE LATTICE

For the lattice without rf, the linear orbit parameters
can be found using transfer matrices. For a magnet piece
which goes from s, to s,, and the coordinates go from x;,
to x;,, the transfer matrix is defined as

2489
ag;
T, =—, (8.1a)
K ale
where the g; are the transfer functions
xp=8i(x1) - (8.1b)

The right hand side of Eq. (8.1a) is evaluated on the
closed orbit for a certain Ap /p, and i =1,4 and j=1,4.

For the reference orbit used here, where the slope of
the reference orbit does not change abruptly, the transfer
matrix for one turn is just the product of the transfer ma-
trices for each magnet piece. The linear orbit parame-
ters, the tune, beta functions, etc., can be computed from
the one turn transfer matrix.

A. Transfer matrices for the point magnets

For the point magnets that replace the magnets in the
approximate lattice, the transfer functions Eq. (4.5) can
be used to compute the transfer matrices. One can see
that 7;;=1 for i =j, and the only other nonzero T}; are
Ty, Ty3 and Ty T43. Thus

1 0 0 0
Ti=l0o o0 1 ol (8.2a)
T, O Ty 1
sin(0/2) h 1 9B, 1
=Pl 2+ +—B, |,
™=, 28y |1T¥P 5 t,B
sin(6/2) h 1 9B,
=SmY/e a4+ —x
Ts="4,, 28" TP,
sin(6/2) h 1 9B, 1
=212 1+ —~+=-B_|,
T 6/2 2 Bp (1+x/p) ax p 7 8.25)
8.2b
Ty=— S0/ h 1\, 08
43 6/2 2 Bp PIay

2
0=(s,—s)/p, h=s,—s; .

Equations (8.2) are for the case where the point magnets
are put at the ends of each magnet piece which goes from
s, to s,. For x,y,s one uses the coordinates of the parti-
cle just before the point magnet. If one puts one point
magnet at the center of the magnet piece, then in Eq.
(8.2) one replaces & /2 by h.

B. Transfer matrices for the drift spaces

For the drift spaces, the transfer functions given in
Egs. (5.3), (5.6), and (5.10) can be used to compute the
transfer matrix by computing the various required
derivatives of the transfer functions. The transfer func-
tions are summarized as follows for a magnet piece that
goes from s; to s,:
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y2=yi1t+a,l,

92~ 491 >
l1,=(+x,/plpsin(0)/q,, ,
qy2=q,1c0s0+ g ;sinb ,

gs= —q,5in6+q,,cos0 , (8.3)
x2=x1+(1+x1/p)2psin(0/2)25(;0-2/i) ,
q,(6/2)=¢q,,cos(0/2)+q,sin(6/2) ,
q,(0/2)=—q,sin(6/2)+g,,cos(6/2) ,
0=(s,—s)/p .
One can then find the T}; using T;;=9dg; /0x; which gives
Ty, T, 0 Ty

0 Ty 0 Ty
Y Ty Ty 1 Ty
0 0O 0 1
For 1/p=0,T =Ty, =1, T3, =T,,=0,
ro_ %l g
Uol4xi/p g’
T,=11/p=0,
q,(6/2) q,(0/2)q,,
T,=(1+x,/p)2psin(6/2) s
12 PP 952951 q,(6/2)qy,
(s,—57) q 2
T,=——1 11+ [ZL| |, 1/p=0,
ds1 ds1
(6/2)
Tyo=(14x,/p)2psin(6/2)—— | cos(0) -1
qs2 952951
—sin |2 |21 |
2 ds1
(s,—51)
T, = 2 1 qxlgyl , l=0,
ds1 q;s1 P
T%=4x/9 >
Typ=1, 1/p=0, (8.5)
Ty,=—(q,1/45 )sinb ,
T24:0, 1/p=0,
T3, =(gy,/45,)sin0 ,
T;,=0, 1/p=0,
Ty = 91 1, 4x1 cosf@+sinf | ,
ds2 qs1
dx19
Ty=Iyp XIzyl ,» 1/p=0,

s1

2
a1

952951

cos6

»

Tyu=1,(1t+q /97, 1/p=0.

C. Large accelerator approximation

The transfer matrices are not used in tracking particles
for long times. They are primarily used to find the tune
and other linear orbit parameter. Approximations in
computing the T;; will produce small errors in the linear
orbit parameters which may be acceptable.

One interesting limit is the large accelerator approxi-
mation which is usually valid for large accelerators. This
assumes that

x/p<Kl,
g2 <<1l, g}<<1, (8.6)

0g, <1, 6q,<<1,

0 is the bending angle of each magnet piece. In this limit
one finds that for drift spaces

1 T, 0 0
01 00
7= o 11,
0O 0 0 1

T,=(1+x,/p)2psin(6/2), O8=(s,—s,)/p

IX. SUMMARY OF THE RESULTS

This section summarizes the results found for the
transfer functions when one uses a reference orbit that is
made up of arcs of circles and straight lines which join
smoothly with each other. The results given below might
be used in writing a symplectic tracking program.

It is assumed that no longitudinal field is present
B;=0. This is a good approximation for large accelera-
tors, where the field in each magnet may be replaced by
the average integrated fields B, (x,y ),Ey(x, y) distributed
uniformly in s along the magnet.

— 1 Sy
B, = 555, 95, ds B, (x,s,y) ,
— 1 sy
= fsl ds B,(x,5,y) , 9.1)
B,=0.

5

51 to s, is the entire length of the magnet along the refer-
ence orbit. It is assumed that each magnet is broken up
into a number of pieces. A magnet piece of length 4 is re-
placed by point magnets at the ends, or one point magnet
in the center, and with corresponding drift spaces. In the
following, g, =p, /p, 4,=p, /p,q,=(1—ql—q})'/*.



A. Transfer functions for point magnets

The phase transfer functions is used here to indicate
the set of functions that relate the final coordinates to the
initial coordinates. The transfer functions for a point
magnet located at s=s;, for the case where the point
magnets are placed at the ends of the magnet piece, is

X=X, yZ:yl ’

1
2%} qx1+Bp 2(1+x1/P) B (xl,yl)
qy2=qyl Bp 2(1+ 1/P) B (xl,yl)

h is the length of the magnet picce. For the case where
the point magnet is placed in the center of the magnet,
replace h /2 by h in Eq. (9.2).

B. Transfer functions for drift spaces
For the region where 1/p=0,
9x2=4qx1 5 X2=X1Fql
92=49y1 5 V2= +qy1112 ’

(9.3)
1, =(sy—51)/q5 »
—(1~—qx—-qy)l/2 ’
1, is the path length between s; and s,.
For the region where 1/p70,

qXquxlcose+qSISin9 ’
952= —qx5in6+g cosb ,
6=(SZ —Ss )/p ,

1 9.4)

x,=x,+(1+x,/p)2psin(6/2)
q,1c080/2+¢qsin6 /2
X :
—g,18in@+ g, cosO

lpy=+x,/plpsin(0)/q;, ,

92491 > J’2=.V1+‘1y1112 .

C. Transfer matrices for the point magnets

We have

1 0 0 0
Ty 1 Ty O
Ty=10 o 1 o’
Ty 0 Ty 1
sin(0/2) h 1 1
T, =300/ 1 +=B, |,
2z 6/2 2 Bp p?
sin(6/2) h 1 9B,
T, =32 N L 14x/p)—2
BT, 2Bp TR/
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sin(6/2) h 1 3B, 1
—_sinl6/2) h 1+ +-=B, |,
Ty 02 28y |1 P T,
(0/2) h oB ©-9)
T —_sin(6/2) h 1 x
43 0/2 2By 1 Tx/P) ay

0=(s,—s)/p, h=s,—s, .

Equations (9.5) are for the case where the point mag-
nets are put at the ends of each magnet piece which goes
from s, to s,. for x,y,s one uses the coordinates of the
particle just before the point magnet. If one puts one
point magnet at the center of the magnet piece, then in
Eq. (9.5) one replaces h /2 by h.

D. Transfer matrices for the drift spaces

We have
T, T, 0 Ty
0 Ty 0 Ty
Ty= Ty Ty 1 Tay|” ©-6
0 0 0 1
For 1/p=0, T, =Ty =1, T3;=T,,=0,
=1+x2/P=qsx
oltx e 40
T11:1, l/p:0,
n=1+x,/p)
q,(0/2) | 1+q,(6/2)q,,
X2psin(6)/2
P 952951 qs(o/z)qSZ

q,(6/2)=¢q, cos(6/2)+q,sin(6/2) ,
q,(0/2)=—gq,,sin(0/2)+gq,cos(6/2) ,

(s,—5,) 2
T12= 2 1 1+ qxl , 1/p=0 ’
qs1 451
(6/2)
12=(1+x,/p)2psin(6/2) cos(e)&————q"—1
qs> 952951
. (7] qyl
—sin |— |— |,
2 ds1
(s,—s;) ¢q
T, = 275 x12qy1 , l=0,
gl 451 P

Ty =45,/4; >
Tp=1, 1/p=0,

Ty=—(qy1/95)sin0 ,
Ty,=0, 1/p=0,

31 =(qyl/qs2)Sin9 >
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T35=0, 1/p=0,
q
Ty=201 |2 cos0+sin0 | |
qs2 s1
qx19
Ty=1y, XIzyl » 1/p=0,

2

1+ U1 cos@
d52951

Ty,=I,(1+g} /%), 1/p=0.

Ty=1y

>
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